

 Navigation

 	
 index

 	
 next |

 	KvarQ 0.12.2 documentation

Welcome to KvarQ’s documentation!

Contents

	Installing KvarQ
	Precompiled packages

	Installing KvarQ From Source

	Using KvarQ Command Line Interface (CLI)
	Using The Command Line

	Loading of Testsuites

	Scanning a File

	Extracting results from a batch of scans

	Showing information about testsuites

	Directly Analysing a .fastq

	Showing Results

	Updating Results

	More Usage Examples

	Using KvarQ Graphical User Interface (GUI)
	Launching the GUI

	Configuring KvarQ

	The Scanner

	The Explorer

	KvarQ testsuites
	Rolling your own testsuite

	Versions, Compatibility

	Annotated example

	Tutorial
	Ebola Outbreak 2014

	Creating a new SNP testsuite

	Understanding the Scanning Process
	Overview

	Configuration Parameters

	Hacking KvarQ
	About flanks

	About positions

	About the complementary DNA strand

	Sequence of tests

	About clonal variants (“heterozygous calls”)

	Glossary

	How to cite

	Changelog
	version 0.12.2

	version 0.12.1

	version 0.11.3

	version 0.11.2

	version 0.11.1

	version 0.10.10

	version 0.10.9

	version 0.10.8

	version 0.10.7

	version 0.10.6

	version 0.10.5

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

Installing KvarQ

Precompiled packages

The different releases are available als compiled packages for Microsoft
Windows and OSX (10.6 and later): http://github.com/kvarq/kvarq/releases

Note that the packages are currently not signed and you therefore
have to enable OS X to run programs from unidentified developers [http://www.mcvsd.org/tips/powerteacher/osx_unidentified_developers.html]
if you run OS X 10.8 or newer.

Installing KvarQ From Source

The source code is hosted in a git repository at http://github.com/kvarq/kvarq

Dependencies

KvarQ does not have any external dependencies, apart from
Sphinx_ for building the html documentation from the docs/*.rst
sources files.

Linux

in case your system runs a python older than version 2.7, you have
to install a newer version of python first; this is easiest done
locally

wget http://www.python.org/ftp/python/2.7.4/Python-2.7.4.tgz
tar xzf Python-2.7.4.tgz
cd Python-2.7.4
mkdir $HOME/py
./configure --prefix=$HOME/py
make && make install
PATH=$HOME/py/bin:$PATH
export $PATH
python -V

then download and install setuptools [https://pypi.python.org/pypi/setuptools]:

wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py -O - | python

download the latest source distribution and build (calling setup.py
with test will also copy the compiled library into the source
directory)

wget https://github.com/kvarq/kvarq/archive/master.zip
unzip master.zip
rm master.zip
cd kvarq-master
python setup.py test

now you can either install KvarQ (optionally into a virtual environment):

python setup.py install

or setup an alias after including KvarQ into your PYTHONPATH. This is
the method of choice if you intend to plan to modify the KvarQ source because you don’t need to make a fresh installation after every
change – but don’t forget to re-run python setup.py test in case you changed
the C source code to make sure the compiled extension is copied into the correct
directory (or by sourcing the script . ./activate)

PYTHONPATH=`pwd`; export PYTHONPATH
alias kvarq='python -m kvarq.cli'
kvarq -h

In either way, you now have the KvarQ command at your disposal and can
continue using the commandline or start the
graphical user interface.

OS X

Prerequisites:

	If you use OS X Snow Leopard (10.6) or below, you first have to install
Python 2.7 [http://www.python.org/download/releases/2.7/] (this version
of python is included in OS X Lion 10.7 and newer; but you might
nevertheless want to install a vanilla copy of Python)

	On the other hand, OS X Snow Leopard and older include a C compiler that is
needed to build the program. If you have no C compiler installed (you get a
command not found error when you type gcc or clang at the
Terminal), you need to download Xcode [https://developer.apple.com/downloads/index.action] from Apple’s
developer page (registering an account only takes some minutes). Choose
Command Line Tools for Xcode from the “Developer Tools” category.

From this point on, follow the steps outlined in the Linux section. If you want to create an OS X application, you
will also need to download and install py2app [http://pythonhosted.org/py2app/].

Windows

Prerequisites:

	First download [http://www.python.org/download/releases/2.7.5/] and
install Python (at least version 2.7). You should download the 32bit
version regardless of your machine architecture (or you will run into
problems [http://bugs.python.org/issue7511] with the steps outlined
below). If you plan to use python for scientific ends, you might want to
install the Enthought Canopy Distribution [http://www.engthought.com/downloads/] that bundles many interesting
packages.

	Because KvarQ uses a compiled module to scan through the files you will
have to install a C compiler. The simplest choice is to download and
install Microsoft Visual Studio Express (e.g. VS Express 2012 [http://www.microsoft.com/visualstudio/deu/downloads#d-2012-express]).
This will automatically set the environment variable VSxx0COMNTOOLS
(with xx being the version of visual studio).

	KvarQ includes a pthreads [http://sourceware.org/pthreads-win32/] in
win32/pthreads for compiling the C extension. You have to copy
this file into your windows folder or make sure that win32/pthreads
is in your DLL search path.

You should now be able to download, build and test the program pretty much the
same way as described above. To create a
stand-alone executable package (via python setup.py py2exe) you will also
need to download py2exe [http://www.py2exe.org/]. Finally, you will
probably want to install some packaging system [https://zignar.net/2012/06/17/install-python-on-windows/] (not installed by
default) to get more python packages.

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

Using KvarQ Command Line Interface (CLI)

Using The Command Line

Depending on which installation instructions you
followed, the KvarQ command line utility will be accessible in a
different way

	installation from source: simply enter KvarQ on the command
line or alternatively call python -m kvarq.cli (make sure the
directory containing kvarq/ is in the PYTHONPATH if you
just downloaded & compiled KvarQ without installing it)

	binary installation windows: go to the directory with the kvarq
files and start kvarq.exe

	binary installation OS X: enter the following command in a
shell: /path/to/kvarq.app/Contents/MacOS/python -m kvarq.cli

In either case you can use all the functionality described below
by using this one comand with appopriate flags. The different flags
are all described briefly if KvarQ is run with the --help command
line switch.

Note that most command line arguments apply to a specific subcommand, but
some arguments (such as declaration of additional testsuites directories using the -t option or logging using the -d
and -l options) apply to all commands and are therefore specified before
the subcommand.

Loading of Testsuites

Loading of Testsuites is a two step process:

	First all available testsuites are discovered. KvarQ
looks for testsuites in the following directories

	The directory testsuites/ in the directorythat contains the
executable. That is where the testsuites are originally located after
download.

	In the directory kvarq_testsuites/ in the user’s home directory.

	In the directory testsuites/ in the current working directory

	From directories specified with the environment variable
KVARQ_TESTSUITES – use your system’s path separator (; on
windows, : on most other systems).

	From any directories specified with the general --testsuite-directory
(shorthand -t) command line switch.

If a testsuite is found several times, the last occurrence is used. This
allows for easy modification of existing testsuites: simply copy the files
into the directory ./testsuites/ and modify them. Because discovery
takes place later on the current working directory, these modifications
will override the original testsuites. This mechanism also easily allows
to have different versions of the same testsuite – simply rename the
directory (e.g. copying MTBC/ to MTBC-legacy/ before applying any
incompatible changes to the testsuites).

	Testsuites are later on loaded from this pool of discovered testsuites
when necessary. When scanning a .fastq file, the testsuites have to be specified explicitly,
but for most other actions (such as showing results), testsuites are loaded automatically.

Scanning a File

The scan subcommand scans a .fastq file and saves the results
in a .json file. There are many additional parameters to this command.
See the following examples to illustrate some scenarios.

Simplest scenario: Scan a file, showing a progress bar during the scanning
process and save the results (using the whole MTBC testsuites):

kvarq scan -l MTBC -p H37v_strain.fastq H37v_strain.json

Being more verbose and copying the log output into a separate file:

kvarq -d -l kvarq.log scan -l MTBC -p H37v_strain.fastq H37v_strain.json

In the following example, only the phylogenetic testsuite is loaded:

kvarq scan -l MTBC/phylo H37v_strain.fastq H37v_strain.json

There are many more command line options; in the following example, KvarQ
uses only one thread (this results in a much slower scanning, but would be
advisable if many scans are executed in parallel as scheduled jobs),
specifies explicitly the .fastq variant (normally this variant is guessed
by peeking into the quality scores), and ignores all reads that are shorter
than 30 base pairs (after quality trimming):

kvarq scan -l MTBC -t 1 --variant Sanger -r 30 -p H37v_strain.fastq H37v_strain.json

During the scanning, it is possible to obtain some additional statistics by
pressing <CTRL-C> on the terminal (this does not work on Windows when you
use a MinGW bash prompt). Pressing <CTRL-C> twice within two seconds will
interrupt the scanning process and proceed to calculate the results with the
data gathered so far.

Usually, the default parameters for quality cut-off and minimum overlap (see
Configuration Parameters) work pretty well. If you encounter problems
with a particular .fast file, refer to the example in
Determine Scanning Parameters.

Extracting results from a batch of scans

Normally, you would run KvarQ over a whole series of .fastq files
and then in the end extract the relevant information from the resulting
.json files. The summarize command allows such an extraction
of summary information from multiple .json files. The following
command extracts the results, as reported by the different testsuites,
and saves it to a .csv file:

kvarq summarize results/*.json > results.csv

Showing information about testsuites

The info commands displays version information and some summary statistics
about testsuites. Testsuites can be specified the same way as when
scanning a file, so this command is handy to
estimate how many templates would be loaded with a given testsuite
selection. Using the -L command line switch loads all discovered
testsuites:

kvarq info -l MTBC
kvarq info -L

Directly Analysing a .fastq

Use to show subcommand to analyze .fastq files directly without
performing a scan of the file. For example, the readlengths that would result
from a specified quality cutoff can be displayed using:

kvarq show -Q 13 H37v_scan.fastq

Showing Results

Some simple analysis of .json files are possible using the command line,
but the GUI explorer is much more powerful.

The subcommand illustrate can be used to show the final results of
the scanning, as well as detailed information about the coverages or
a histogram of the (quality-cut) readlengths encountered:

kvarq illustrate -r H37v_strain.json
kvarq illustrate -c H37v_strain.json
kvarq illustrate -l H37v_strain.json

Updating Results

Since a .json file contains not only the final results but also the
intermediare results (encoded in kvarq.analyse.Coverage), it is
possible to update the results sections after modifying the code without having
to re-scan the .fastq file. The .json file is updated in-place:

kvarq -d update H37v_scan.json

More Usage Examples

Verify File Format Integrity

Check all .fastq files in a directory structure for file format integrity

#!/bin/bash
for fastq in `find /tbresearch -name *.fastq`; do
 python -m kvarq.cli -d show "$fastq" 2>"$0_error.log"
 err="$?"
 echo $err $fastq
 if [$err -ne 0]; then
 # file format error
 base=`basename "$fastq"`
 mv "$0_error.log" "${base%.fastq}.log"
 fi
done
rm "$0_error.log"

Determine Scanning Parameters

To find ideal values for the Configuration Parameters it’s a good idea
to first have a look at the output of python kvarq.cli show -Q 13 (minimum
PHRED score of 13 corresponds to p<0.05).

In the following example, the quality score needs to be lowered to yield
anything useable from the .fastq:

[0- 3] 4440 (44%)***
[3- 6] 2995 (29%)***
[6- 9] 1221 (12%)*****************
[9- 12] 618 (6%)*********
[12- 15] 364 (3%)*****
[15- 18] 206 (2%)***
[18- 21] 93 (0%)*
[21- 24] 44 (0%)
[24- 27] 11 (0%)
[27- 30] 1 (0%)
[30- 33] 0 (0%)
[33- 36] 0 (0%)
[36- 39] 2 (0%)
[39- 42] 1 (0%)
[42- 45] 2 (0%)
[45- 48] 2 (0%)

In the next example, the minimum overlap and minimum readlength should be adapted to
something below 25:

[0- 2] 183 (1%)******
[2- 4] 209 (2%)*******
[4- 6] 611 (6%)*********************
[6- 8] 839 (8%)******************************
[8- 10] 896 (9%)********************************
[10- 12] 822 (8%)*****************************
[12- 14] 867 (8%)*******************************
[14- 16] 633 (6%)**********************
[16- 18] 692 (6%)************************
[18- 20] 628 (6%)**********************
[20- 22] 499 (5%)*****************
[22- 24] 520 (5%)******************
[24- 26] 1810 (18%)***
[26- 28] 706 (7%)*************************
[28- 30] 82 (0%)**

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

Using KvarQ Graphical User Interface (GUI)

Launching the GUI

Depending on how KvarQ was installed, there
are different ways of launching the GUI

	Installation from source: simply enter kvarq gui on the command
line or alternatively call python -m kvarq.cli gui. When KvarQ
is launched this way, you can use some command line switches (for example specify the directory containing the
testsuites).

	Binary installation windows: go to the directory with the KvarQ
files and start kvarq-gui.exe

	Binary installation OS X: open the KvarQ application in the Finder

Below is what you should see after launching the GUI

[image: _images/main.png]
The right pane in the main window shows the log output that describes the
general activity as well as useful additional information during the scanning
process. Important messages (warnings, errors) are highlighted in red.

The two buttons on the left open the scanner to scan
.fastq files and the explorer to view results saved as
.json files from previous scans.

Configuring KvarQ

[image: _images/settings.png]
The engine configuration parameters can be
modified in the settings window. Usually, the default values work well, but in
some cases (such as old low-quality files) it can be advantageous to change
some of these values.

The Scanner

This simple window allows to scan a single or multiple .fastq files to
generate .json files (depending on whether a single or multiple files
are selected in the file selection dialog).

[image: _images/testsuite_selection.png]
When the selection of .json is done, the scanner shows a window with a list
of discovered testsuites that can be checked
individually to be included during the scan of the .fastq files.

[image: _images/simple_scanning.png]
The progress bar (yes, the design is on purpose to remind users to
use the command line) shows the progress as well as estimated
time left for the current file. The scanning process can be interrupted
by clicking on the stop button.

Once the scanning process is done (for all files), the results can be saved
to .json files (one per .fastq file). The result of the last scan
can also be viewed directly, without saving it to file.

The Explorer

The explorer is a simple Tk program consisting of different windows:

[image: screenshot of directory explorer]
Directory explorer viewing .json files in a directory

Double-clicking any of the list items will open then .json explorer
showing details on the selected file.

It is also possible to export the analysis summary of all displayed
.json files to a excel sheet by using the button at the bottom of the
list.

[image: screenshot of .json explorer]
.json explorer showing general information about file

In the upper pane of the .json explorer shows an overview over the
file. The contents of the lower pane depend on the selection in the upper
pane. Because the info section is selected in the upper pane in this
example, the lower pane shows general information about the scanning process,
such as the scantime or the kvarq.engine configuration.

The items ending with ... open another window when double-clicked
(similar to the coverages described below).

[image: screenshot of .json explorer]
.json explorer showing analysis test details

In this case, the phylogenetic suite was selected in the upper pane.
Therefore, all tests belonging to this testsuite are displayed in the lower
pane. Every item in the upper pane (apart from the “info” item) consists of
the testsuite name (in this case “phylo”) and the summarized result (in this
case lineage 2, sublineage bejing).

Every item in the lower pane informs about the following test details:

	Whether the test was “found positive” : a + sign in front of the test
name signifies that this test was positive. For a SNP this means that
the specified mutant allele was found and for a test covering a larger
region of the genome this signifies that there was at least one mutation
detected in the region of interest. A ~ sign (not shown) in front of
the test name would mean that there were base calls with the most
dominant base below 90%, suggesting a mixed colony.

	Test name that describes the genotype.

	Double semicolon :: followed by description of what was tested (this
can be a SNP or a region; regions are specified by their start/stop base
position and a + or - specifying which strand is coding at this
position).

	Double-clicking on an item in the lower pane opens a coverage window.

Interpreting Coverages

KvarQ displays the results of the scanning process in the form of
coverages. This display shows information about how many reads were mapped
against the sequence of interest and whether there were any mutations detected.
The same display is used for SNPs as well as for longer regions, althoug the
signification of the displayed elements is somewhat different.

[image: SNP coverage, mutant genotype]
Mutation in the katG resistance confering codon.

General structure of a coverage window:

	The x axis is the genome position. Add the number showed on the x axis to
the base position in parantheses in the figure title.

	The y axis is depth of coverage, piling all reads up that mapped to the
given positions.

	The red vertical lines show start and stop of the region of
interest. In this case, the region of interest is only three bases
long, but 25 bases of spacers are added on either side when scanning
for the region (see Configuration Parameters).

	The horizontal lines are mean and pseudo-variations of coverage over the
region of interest.

	The colored graphs show mutations. In this example there is clearly a
mutation that replaced the second base with a guanosine nucleotide. Note
that not every read showed this mutation, but a handful had the original
base (if every single read showed this mutation, the colored line would
go all the way up to the thick black line).

	Moving the mouse over the graph shows quantitative information about
the hovered genome position at the bottom of the graph.

[image: SNP coverage, mutant genotype]
Coverage of a single nucleotide polyphormism (SNP), mutant genotype.

Because KvarQ is looking for a specific mutant sequence, the SNP is “found”
if there is no mutation at its position, as is the case in this example
(i.e. at position 157129 there is really a T and not a C).

Note: “No color” means mutant for SNP, while it means wild type for
regions...

[image: SNP coverage, wild type genotype]
Coverage of a single nucleotide polyphormism (SNP), wildtype genotype.

Note: There’s also the (quite unlikely) possibility that there is a new
(i.e. not-looked-for) SNP. This example shows the SNP3304966GA. The
bottom display (coverage=91 mutations=91x G) makes it clear that we
have indeed the wild type.

Keyboard Navigation

	switch between panes using Tab

	select item using up, down

	open window by pressing enter

	close window via escape

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

KvarQ testsuites

Testsuites define positions to scan for as well as how to interpret mutations.
They have to be loaded (see Loading Testsuites)
selected prior to scanning but also to analyze .json data
using the explorer. A .json file generated with
a certain combination of testsuites can only be analyzed using the explorer if
testsuites with the same version are used (this is because .json files only
contain the names of the SNPs but the location within genes is saved in the
testsuites).

A KvarQ testsuite is a python source file that defines
a kvarq.genes.Testsuite with the same name as the python file.
Several of these testsuites can be grouped together within a single directory.
Any number of such directories containing testsuite python files can be stored
in a well defined location from which it is then discovered in particular
order.

For example, the testsuites spoligo, resistance, and phylo are
grouped together in the directory MTBC/ and can be found in the directory
testsuites/ of KvarQ:

	testsuites/MTBC/_util.py : every file that starts with an underscore
will not be loaded from KvarQ when loading testsuites from a directory,
but can still be used from other python modules in the same directory via
from _util import ancestor (which loads the hypothetical ancestor genome
from a data file in the same directory

	testsuites/MTBC/phylo.py : scans for phylogenetic markers in MTBC

	testsuites/MTBC/resistance.py : tests for some common resistance
mutations in MTBC

	testsuites/MTBC/spoligo.py : in silico spoligo typing of MTBC

Rolling your own testsuite

KvarQ makes it very simple to write new testsuites. It is probably easiest to
take a pre-existing testsuite and adapt it to your needs. All testsuites
shipped with KvarQ are well annotated and there are some articles in the
tutorial section that show how to adapt the testsuites
in the testsuites/example/ directory.

Versions, Compatibility

The following problems can arise when different versions of testsuites are used

	A testsuite is not compatible with the KvarQ version that loads it. To
avoid this scenario, the module global GENES_COMPATIBILITY is compared
with the module global kvarq.genes.COMPATIBILITY version of
KvarQ running it. The first number must be matched exactly and the second
number must be equal or smaller to the one defined in the genes package.
Whenever KvarQ introduces new features that break the
backwards-compatibility with the testsuites, the first number is increased.

	A testsuite is loaded to display data from a .json file that was generated
by testsuite with a different number. The moduel global VERSION
tells the version of the testsuite defining it. Upon a backwards-compatible
change (e.g. deletion of a previous test), the minor number is increased by one.
Note that introductions of new tests are not backwards compatible because
the new version of the testsuite will be looking for non-existing tests when
loading data generated with an old version.

Annotated example

The following is a dump of the extensively annotated testsuite
testsuites/examples/example.py included with KvarQ

this is an example testsuite that illustrates how to write simple
SNP/region based testsuite to be used with kvarq

the testsuite can be included during the scanning by using the
command line parameter '-t' or in the configuration window in the GUI

see the kvarq documentation for more information:
http://kvarq.readthedocs.org/en/latest/testsuites.html

the version specifies the version of the testsuite itself; this version
string is included in the .json scan results
the minor number should be increased every time the file changes. the major
number should be increased when the changes are not backwards compatible
(e.g. when a new test is added)

VERSION = '0.1'

this version is compared against the COMPATIBILITY global module variable
defined in kvarq.genes
as before, compatibility is warranted if the first number is equal and the
second equal or lower (than the one defined in kvarq.genes)

GENES_COMPATIBILITY = '0.0'

we use these classes to define our testsuite
from kvarq.genes import Genotype, Gene, Test, Testsuite, Reference, SNP, TemplateFromGenome

load hypothetical MTB ancestor genome from '../MTBC' directory
(shipped together with KvarQ)
from kvarq.genes import Genome
import os.path
MTBC_dir = os.path.join(os.path.dirname(__file__), os.pardir, 'MTBC')
ancestor_path = os.path.join(MTBC_dir, 'MTB_ancestor_reference.bases')
ancestor = Genome(ancestor_path, 'MTB ancestor')

use this for loggging (displayed on console / in main GUI window)
from kvarq.log import lo

references tell where more information ont he mutations can be found
tbdream = Reference('TBDReamDB : see http://tbdreamdb.com/')

the first genotype simply signals isoniazid resistance
inhA = Genotype('Isoniazid resistance')
the second genotype also signals isoniazid resistance but indicates
the gene to which it belongs to -- this enables output of resistance
mutation in the familiar gene.XposX format
katG = Genotype('Isoniazid resistance', Gene(ancestor,'katG', 2153889, 2156111, plus_strand=False))

define two SNPs : 1673432TA and 1673432TC -- only specified mutations will
be found (i.e. 1673432TATG would not be reported)
note that the SNP is simply the "template" for that will be used when scanning
for mutations in the FastQ reads; the "test" as a whole defines a template,
a genotype (inhA in this case) and the resource from the information is drawn
SNP1 = Test(SNP(genome=ancestor, pos=1673432, orig='T', base='A'), inhA, tbdream)
SNP2 = Test(SNP(genome=ancestor, pos=1673432, orig='T', base='C'), inhA, tbdream)

define a (short) region that should be scanned for ANY mutations here we're
interested in the codon 2155167-2155169; by specifying where the gene is read
from (minus strand) and the position of the amino acid is produced by this
codon (in this case the gene starts at 2153889, therefore the amino acid is
((2155167-2153889)/3 +1)=427) it is later possible to check for (non)
synonymous mutations as before, the "test" consists of a template, a genotype
and a resource (but the "template" is a region and not a SNP as before)
katG_codon = Test(TemplateFromGenome(genome=ancestor, start=2155167,
 stop=2155169, direction='-', aa_pos0=(2155167-2153889)/3 +1), katG,
 tbdream)

it's important to NAME the testsuite the SAME AS THE FILENAME up to the first
dash ! (e.g. it's possible to rename this file to "example-0.1.py")
example = Testsuite([SNP1, SNP2, katG_codon], VERSION)

note that this testsuite is very simple and will simply eport any mutations
found in the FastQ file -- often it makes sense to subclass the Testsuite
class (and redefine the _analyse method) to get a fine-grained control on how
the mutations are synthesized into a result... see the source code of
kvarq.genes.phylo as an example

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

Tutorial

The following examples show how KvarQ can be used to quickly analyze genomic
data in .fastq format. All examples assume that you have
successfully downloaded and installed KvarQ, but have no
other prerequisites. The tutorials are ordered from simpler to more
complicated.

Ebola Outbreak 2014

Gire et al [http://www.sciencemag.org/content/345/6202/1369.full] have sequenced some 99 virus genomes during the 2014
Ebola outbreak [https://en.wikipedia.org/wiki/2014_West_Africa_Ebola_virus_outbreak] and immediately released all sequence data to “facilitate
rapid global research”. In the following, we’re going to develop
a simple testsuite that allows KvarQ to say whether
a .fastq file is from a) a ebola virus, b) the 2014 outbreak, and
c) from any of the three sublineages defined in the paper (see figure 4A).

Creating the Testsuite

The following steps led to the Kvarq Ebola sierraleone14 testsuite [https://github.com/kvarq/kvarq-ebola-sierraleone14/archive/master.zip].

All necessary supplementary materials can be downloaded from the Science
webpage [http://www.sciencemag.org/content/345/6202/1369/suppl/DC1]. In particular, we’re interested in

	Table S2 with the accession numbers of all 99 sequenced genomes. This
are serial isolates from 78 patients.

	File S1 that contains ebov.mafft.fasta with the sequence alignment.
There are 20 sequences before 2014 and 81 sequences from 2014. The
sequences form Sierra Leone (sequenced in this paper) are identified
by comparing them to the ID column in Table S2.

	Table S4 with the sheet 2014_specific_snps that lists all SNPs that
were found in the new sequences.

With these three files we can generate a list of SNPs that are unique to the
isolates from Sierra Leone. Gire et al [http://www.sciencemag.org/content/345/6202/1369.full] define three sub-lineages (figure
4A) and by comparing the number of sequences that have specific SNPs we can
compile the following table (see the script to extract the SNPs [https://github.com/kvarq/kvarq-ebola-sierraleone14/blob/master/suppl/_extract_SNPs.py] on github).

	Position
	Ancestral
	Derived
	Sublineage

	800
	C
	T
	SL2

	1849
	T
	C
	SL1

	6283
	C
	T
	SL1

	8928
	A
	C
	SL2

	10218
	G
	A
	SL3

	13856
	A
	G
	SL1

	15660
	T
	C
	SL1

	15963
	G
	A
	SL2

	17142
	T
	C
	SL2

Creating a testsuite from this data is quite straightforward. First, we choose
a reference genome to extract data from. This reference genome should have the
ancestral genotype for every SNP that we define. Because we are only
interested in SNPs from the 2014 strains, we simply take a genome from
a previous isolate, for example the sequence EBOV_1976_KC242801 from the
file ebov.mafft.fasta and we save it in a new file called EBOV76.fasta.
this file is then loaded as a Genome in the
testsuite:

old ebola genome from previous outbreak
EBOV76 = Genome(os.path.join(os.path.dirname(__file__), 'EBOV76.fasta'))

Next, we define the a Reference that
identifies the source of the data. Then, we Genotype can be bound to a gene, but in our case we simply
specify it by name.

gire14 = Reference('Gire et al (2014) doi 10.1126/science.1259657')

sub-lineages as defined in gire14
SL1 = Genotype('SL1')
SL2 = Genotype('SL2')
SL3 = Genotype('SL3')

In the next step we define the actual SNPs
and bind them to the genotypes defined above.

SNPs extracted from primary data using suppl/_extract_SNPs.py
SNPs = [
 Test(SNP(genome=EBOV76, pos=800, orig='C', base='T'), SL2, gire14),
 Test(SNP(genome=EBOV76, pos=1849, orig='T', base='C'), SL1, gire14),
 Test(SNP(genome=EBOV76, pos=6283, orig='C', base='T'), SL1, gire14),
 Test(SNP(genome=EBOV76, pos=8928, orig='A', base='C'), SL2, gire14),
 Test(SNP(genome=EBOV76, pos=10218, orig='G', base='A'), SL3, gire14),
 Test(SNP(genome=EBOV76, pos=13856, orig='A', base='G'), SL1, gire14),
 Test(SNP(genome=EBOV76, pos=15660, orig='T', base='C'), SL1, gire14),
 Test(SNP(genome=EBOV76, pos=15963, orig='G', base='A'), SL2, gire14),
 Test(SNP(genome=EBOV76, pos=17142, orig='T', base='C'), SL2, gire14),
]

Finally, we define a new Testsuite from
these SNPs and instantiate it to a variable called sierraleone14, which
must be the same name as python file. We could use the standard testsuite:

sierraleone14 = Testsuite(SNPs, VERSION)

But we instead choose to define a new testsuite called CountGenotype that
subclasses the _analyse method, to
summarize all SNPs into one line that shows the genotype and the number of SNPs
found for this genotype. See the complete testsuite [https://github.com/kvarq/kvarq-ebola-sierraleone14/blob/master/sierraleone14.py] on github.

Creating a testsuite from this test data is quite straightforward: simply
define each of the SNPs as a Test and instantiate a Testsuite. As a bonus, the Kvarq Ebola sierraleone14
testsuite [https://github.com/kvarq/kvarq-ebola-sierraleone14/archive/master.zip] overrides the _analyse method of the testsuite to display how
many of the specified SNPs have been found for every sublineage. The reference
genome EBOV76.fasta is the first genome found in the file
ebov.mafft.fasta.

View the complete source code of the testsuite on github [https://github.com/kvarq/kvarq-ebola-sierraleone14/archive/master.zip].

Running the Testsuite

Choose any of the patients, e.g. EM119 from table S2. The corresponding
accession number KM233042 [https://www.ncbi.nlm.nih.gov/nuccore/KM233042] in the nucleotide archive yields another link into
the biosample database : SAMN02951962 [https://www.ncbi.nlm.nih.gov/biosample/SAMN02951962], from where the raw sequencing data
can be downloaded. NCBI stores the .fastq file in .sra format, but
this can easily be converted after download using the fastq-dump command
from the SRA Toolkit [http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software].

Now simply download the Kvarq Ebola sierraleone14 testsuite [https://github.com/kvarq/kvarq-ebola-sierraleone14/archive/master.zip], start the
KvarQ GUI, load the testsuite and analyze the
.fastq file, or launch KvarQ from the command line. The
resulting .json file can be opened in the explorer and
should show that the sample from EM119 is sublineage three, showing all the
6 SNPs from SL1, the 4 SNPs from SL2, and the SNP from SL3.

Downloading the sample from EM120 (biosample SAMN02951963 [https://www.ncbi.nlm.nih.gov/biosample/2951963]) and analyzing
it the same way shows that this sample also is positive for the 6 SNPs from SL1,
and the 4 SNPs from SL2, but that is missing the SNP from SL3 (opening the
SNP with the explorer shows that it has the original base G at position
10218).

Creating a new SNP testsuite

After reading the interesting article A robust SNP barcode for typing
Mycobacterium tuberculosis complex strains [http://www.nature.com/ncomms/2014/140901/ncomms5812/full/ncomms5812.html]
I thought it would be nice to analyze some .fastq files with that new
barcoding scheme.

To get things done quickly, I was browsing through the testsuites in the
testsuites/examples directory and found a testsuite called SNPs.py
that looked promising. This testsuite defines a function that loads
SNP declarations from a .tsv file that can easily be edited with a
popular spreadsheet program.

here = os.path.dirname(__file__)
we borrow the reference from the ../MTBC testsuites
genome_path = os.path.join(here, os.path.pardir, 'MTBC', 'MTB_ancestor_reference.bases')
genome = Genome(genome_path, 'MTB ancestor')
ref = Reference('specify reference here')
load SNP information from .tsv file (can be edited with Excel)
SNPs = tsv2SNPs(os.path.join(here, 'SNPs.tsv'), genome, ref)

The format of the .tsv file is straightfoward:

	lineage1
	3920109
	G/T

	lineage1
	3597682
	C/T

	lineage1
	1590555
	C/T

	lineage2
	1834177
	A/C

	lineage2
	3304966
	G/A

	...
	...
	...

There is simply an identifier, followed by the position of the SNP within the
reference genome (loaded from the file ../MTBC/MTB_ancestor_reference.bases
in the example), then the original base, and finally the derived base.
Actually, the SNPs defined in this example testsuite are the same as the ones
used for the main lineage classification in the testsuite MTBC/phylo. We
can quickly confirm this by performing a scan
using the MTBC/phylo and the examples/SNPs testsuites and comparing the
result (type these commands in KvarQ’s root directory)

kvarq scan -l MTBC/phylo -l examples/SNPs tests/fastqs/N0116_1_hits_1k.fastq N0116_phylo_SNPs.json
kvarq illustrate -r N0116_phylo_SNPs.json

This should result in the following output:

examples/SNPs

['lineage2::SNP1834177AC', 'lineage2::SNP3304966GA']

MTBC/phylo

'lineage 2 -- low coverage (median below 10x)'

So indeed both testsuites report lineage2 – because examples/SNPs does not
subclass kvarq.genes.Testsuite, the result is simply the list of
SNPs that were found in the file, while MTBC/phylo fuses the two SNPs into
one lineage result and warns at the same time of low coverage, but that’s
material for another tutorial post...

Coming back the SNP barcoding: it’s simple enough to compile a list of all SNPs
mentioned in the paper. It starts like this:

	lineage1
	615938
	G/A

	lineage1.1
	4404247
	G/A

	lineage1.1.1
	3021283
	G/A

	lineage1.1.1.1
	3216553
	G/A

	lineage1.1.2
	2622402
	G/A

	lineage1.1.3
	1491275
	G/A

	lineage1.2.1
	3479545
	C/A

	...
	...
	...

So let’s first create a new directory for the testsuite-to-be-created, calling
it testsuites/MTBC-SNP-barcodes. Then we copy the following files

	testsuites/MTBC-SNP-barcodes/coll14.py : a copy of the file
testsuites/examples/SNPs.py, will be modified below

	testsuites/MTBC-SNP-barcodes/coll14.tsv : the SNP list extracted from
the paper; you can download the list from github [https://github.com/kvarq/kvarq-MTBC-SNP-barcodes/blob/master/coll14.tsv]

Some parts of the example testsuite have to be modified accordingly

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	VERSION = '0.1'
GENES_COMPATIBILITY = '0.0'

import os.path

from kvarq.genes import Genome, Reference, SNP, Test, Testsuite, Genotype

def tsv2SNPs(path, genome, reference):

 tests = []
 for line in file(path):

 parts = line.strip().split('\t')
 name = parts[0]
 pos = int(parts[1])
 bases = parts[2].split('/')

 snp = SNP(genome=genome, pos=pos, orig=bases[0], base=bases[1])
 test = Test(snp, Genotype(name), reference)
 tests.append(test)

 return tests

here = os.path.dirname(__file__)
genome = Genome(os.path.join(here, 'MTB_ancestor_reference_coll.bases'), 'MTB ancestor')
coll14 = Reference('Coll et al (2014) -- doi: 10.1038/ncomms5812')
SNPs = tsv2SNPs(os.path.join(here, 'coll14.tsv'), genome, coll14)

coll14 = Testsuite(SNPs, VERSION)

Remarks

	line 1 : it doesn’t really matter what VERSION we specify, but it’s
important to increase it when the testsuite is modified to
maintain compatibility

	line 25 : because the reference genome
MTBC/MTB_ancestor_reference.bases that was used in the MTBC/phylo
testsuite has already the derived base in some of the SNPs defined in
coll14.tsv, we cannot use it as a reference genome (KvarQ asserts that
the reference genome has the ancestral base for all defined SNPs to prevent
errors). therefore, I have assembled a new reference genome [https://github.com/kvarq/kvarq-MTBC-SNP-barcodes/blob/master/MTB_ancestor_reference_coll.bases] that has
the ancestral base for all SNPs

	line 26 : the reference for the testsuite is the original publication
from which the SNPs are taken

	line 27 : the SNPs are read rom the file coll14.tsv

	line 29 : the testsuite must be named like the file

Now let’s see whether KvarQ accepts the new testsuite: the command kvarq info
-l MTBC-SNP-barcodes/coll14 should produce the following output:

version=0.12.2
testsuites=MTBC-SNP-barcodes/coll14-0.1[62:3162bp]
sum=62 tests,3162bp
sys.prefix=/Library/Frameworks/Python.framework/Versions/2.7

So the new testsuite is accepted and KvarQ tells us that it contains 62 tests
totaling 3162 base pairs (that’s 62 times 1 base plus two flanks of 25 base
pairs each).

Running the testsuite

Let’s first scan a single .fastq to make sure the testsuite works as
expected. For example from the internet: MTB_98_1833 [ftp:////ftp.broad.mit.edu/pub/annotation/mtuberculosis/diversity/MTB_98_1833.fastq.gz]. Then we scan this file
with our new testsuite:

kvarq scan -p -l MTBC-SNP-barcodes/coll14 MTB_98_1833.fastq.gz MTB_98_1833.json

After a couple of minutes we can examine the result of the scan:

kvarq illustrate MTB_98_1833.json
kvarq explorer MTB_98_1833.json

This shows us the file contained at the same time SNPs characteristic for
lineage 2 and lineage 4, and that the reads are quite short (around 35 base
pairs after quality trimming). Practicaly all SNPs were found (with a coverage
ranging from 20 to 50), most in their ancestral variant.

Ok, so everything seems to work and we can proceed scanning our local library
of .fastq files, by writing a simple bash script

#!/bin/bash
mkdir results/
for fastq in /genomes/fastqs/*.fastq; do
 json=`basename "$fastq"`.json
 kvarq -l coll14_scan.log scan -l MTBC-SNP-barcodes/coll14 $fastq results/$json
done

Some hours later we have scanned for the SNP barcodes of hundreds of genomes,
with a copy of the KvarQ log in the file coll14_scan.log and a new
.json file in the results/ directory for every genome scanned. This
information can then be further analyzed using a script that shows all
information in tabular form and can also be downloaded from github [https://github.com/kvarq/kvarq-MTBC-SNP-barcodes/blob/master/_summarize.py] (note
that the script starts with an underscore _ because it is not a testsuite
itself and should not be auto-discovered).

The finished testsuite can also be found on github [https://github.com/kvarq/kvarq-MTBC-SNP-barcodes/].

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

Understanding the Scanning Process

Overview

[image: overview of scanning process]
Simplified overview of scanning process and preparation.

Testsuites are python source files that define the SNPs
of interest (or in this case a 3 base pair long region) as well as other
relevant genetic information (in this case the katG gene which can confer
Isoniazid resistance). This information is used to extract a “target
sequence” from a hypothetical ancestral
MTBC genome: on both sides, additional bases (“flanks”) are concatenated to
avoid border effects within the sequence of interest. During the scanning
process, every read is trimmed depending on its PHRED score (in this case, a
quality cutoff of Q=13 was defined which corresponds to the ASCII
character /). After the scanning, all reads that matched the target
sequence are assembled to a “coverage”
that indicates the overall coverage depth as well as all detected mutations
(green). In a further step, additional information is generated from this
coverage (such as the resulting amino acid sequence) and finally a short
“result” string is generated that summarizes the result of the scanning
process.

[image: data flow]
This figure illustrates the flow of data inside kvarq.

Python modules/packages are colored in blue, C extensions in red. Rectangles
with rounded corners represent data structures passed along the way.

The testsuites provide a list of sequences. The
C extension kvarq.engine then scans the .fastq file and finds all
occurrences of these sequences. The list of these occurrences (the hit
list) is then passed to the module kvarq.analyser that maps the
reads onto the original sequences and creates coverages (see
Coverage. This coverage is passed back
to the different testsuites that calculates the final results. The
coverages are saved along with the results (and optionally the hit list) into
the .json file.

Testsuites 1/2

Depending on what testsuites are loaded (via the
command line or the settings dialog),
KvarQ performs different analysis suitable to detect different genomic markers
in different organisms. The testsuite defines a template that is then used to generate a sequence which is passed along.

Engine

The (C extension) module kvarq.engine is the workhorse of the
scanning process. It creates multiple threads that scan through the .fastq
file and returns a list of kvarq.engine.Hit that describe the
position and overlap of reads from the fastq with the different sequences.

This module is actually called from within kvarq.analyser and runs in a
separate python thread. It provides some functions that can be called
asynchronously from the main (CLI/GUI) thread to monitor the scanning process.

Analyser

The module kvarq.analyser takes the hit list from the
kvarq.engine and applies the overlaps of the reads with the templates,
creating a kvarq.analyser.Coverage object for every target
sequence.

Testsuites 2/2

The coverages are then distributed to the different testsuites and every
testsuite does some specific analysis and then reports the final results. For
example, the MTBC resistance testsuite (testsuites/MTBC/resistance.py) first
finds mutations and then determines whether these mutations are synonymous or
non-synonymous and outputs the base mutation as well as the resulting change in
amino acid if the mutation is non-synonymous.

These final results generated by the testsuites are then saved, along with the
coverages, in the .json file. The file also contains all relevant scanning
parameters (including testsuites and their versions).

Configuration Parameters

[image: illustration of configuration parameters]
This figure illustrates the different configuration parameters for kvarq.engine

In this example, Amin='B' causes that only the gray part of the read
(number of bases in this part is readlength) is considered when the read
is aligned to the different sequences. The overlap is the number of
bases that the read and the sequence have in common. In this example the
read is aligned despite of the two bases that differ from the sequence –
this is only the case if maxerrors>=2.

The function kvarq.engine.config() accepts the following parameters

	Amin : ASCII character of the Phred score that corresponds to the
minimal quality score of a base calling to be accepted. Use method
kvarq.fastq.Fastq.Q2A() to translate a Phred score into an ASCII
value.

	minreadlength : After cutting the individual reads using the provided
Amin, reads shorter than minreadlength are discarded.

	minoverlap : Reads that overlap (at the beginning or the end of the
sequence) with less bases than the specified values are not reported.

	maxerrors : Reads that differ in more than maxerrors base positions
are not considered for a match.

	nthreads : Number of threads to use in parallel for scanning the
.fastq file.

These parameters can be set using command line switches or
in the settings dialog.

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

Hacking KvarQ

This chapter is a good starting point if you intend to change anything in
the KvarQ source code, especially in the modules kvarq.genes and
kvarq.analyse. If you’re merely interested in writing a new
testuite, you might also find some valuable information
here in addition to the example testsuites shipped with KvarQ. Make sure
to have read the overview first.

About flanks

In general, KvarQ searches for a given sequence within the genome and checks
for mutations within that “region of interest”. Because .fastq reads are
only accepted if the overlap between the target sequence and the read has a
specified minimum overlap (minreadlength),
the coverage rapidly falls on both extremities of the target sequence. For
this reason, a region of interest is flanked with supplementary bases on either
side. Mutations in these flanks are disregarded, as their sole purpose is
to avoid to have the border effect with low coverage within the region of
interest. TemplateFromGenome
read their bases from a Genome and can easily
add an arbitrary flank on either side of the region of interest.

About positions

	All positions within a Genome are relative
to the index one. I.e. the first codon of the genome (if it were
coding) would be the bases 1-3 which correspond to the first three bytes in
the file (at file positions 0-2). Positions increase in the reading direction
of the plus strand.

	The TemplateFromGenome‘s
start and stop attributes refer to positions in the genome.

	Sequences are simply strings of bases
and therefore, indexing within sequences starts at the first character of
this sequence string. This sequence string may contain flanks on both
sides. The (optional) attribute start refers to the first base after the flank
(i.e. the first base of the sequence of interest).

	In a Coverage, positions simply refer
to its Sequences on the plus strand. A
coverage has no pos attribute and the start, stop attributes
correspond to the (plus strand) sequence’s left and right.

	The Hit structure

About the complementary DNA strand

In general, everything refers to the + strand of the genome. Just before
scanning, the analyser creates a complementary copy of every
Sequence in Analyser.scan(). When assembling the hits in
Coverage.apply_hit(), hits on
the complementary strand are mapped on the positive strand again using the
methods Sequence.plus_idx() and
Sequence.plus_base(). Finally,
the TemplateFromGenome and the
Gene attached to a Test know whether the + or the complementary - strand
is coding and accordingly converts the base mutations in (non-) synonymous
amino acid changes.

Sequence of tests

The Analyser is initialized with a set of
testsuites that define each a given number of
Test. Just before scanning, the analyser
creates a list (actually a OrderedDict)
that contains every test of every testsuite. The base sequences the
engine searches in the .fastq version is ordered
in the same sequence (with the complementary base sequences added at the end of
the list). Later on, the Coverage are
ordered in the same sequence and everything that gets saved to the .json
file (in encode()) uses the same
sequence again. To be able to reconstruct the same order when loading a
.json file, the decode() tries
to identify every test by its name (as returned by its __str__() method) and reconstructs the same sequence of
tests. The Analyser[...]
method retunrs a Coverage and accepts
integers as well as strings and Test).

About clonal variants (“heterozygous calls”)

When the DNA is not extracted with great care from single colonies, this can
easily result in mixed DNA from different clones. Although KvarQ is not
designed to interpret polyclonal variants, the
kvarq.analyse.Coverage lists detailed information about the
frequency of every mutation and new testsuites can use this information to
interpret the results of mixed colony sequencing.

Currently, the explorer displays clonal variants (defined as
base calls with the most dominant base below 90%) with ~ sign, and the
MTBC/phylo as well as the MTBC/resistance testsuites display a remark,
when sequencing date seems to stem from a mixed population sequencing.

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

Glossary

	FastQ file

	read about FastQ files on Wikipedia [http://en.wikipedia.org/wiki/FASTQ_format]

	Phred (quality) score

	read bout quality scores on Wikipedia [http://en.wikipedia.org/wiki/Phred_quality_score]

	MTBC

	Mycobacterium tuberculosis complex

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	KvarQ 0.12.2 documentation

How to cite

If you use KvarQ for your scientific research, please use the following BibTeX
entry (also available in nbib format)

@article{steiner14kvarq,
 title={KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes},
 author={Steiner, A and Stucki, D and Coscolla, M and Borrell, S and Gagneux S},
 journal={BMC Genomics},
 volume={15},
 pages={881},
 year={2014},
 doi={doi:10.1186/1471-2164-15-881},
 url={http://www.biomedcentral.com/1471-2164/15/881}
}

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	KvarQ 0.12.2 documentation

Changelog

version 0.12.2

	new examples/ testsuites and tutorials, leading to
development of new testsuites ebola-sierraleone14 [https://github.com/kvarq/kvarq-ebola-sierraleone14/archive/master.zip] and MTBC-SNP-barcodes [https://github.com/kvarq/kvarq-MTBC-SNP-barcodes/]

	new testsuite discovering/loading mechanism

	easier selection of testsuites via GUI

	better support for clonal variants

	MTBC/resistance scans pncA gene; mutations in rrsS and
rrsK (ribosomal RNA) are labeled correctly

	summarize command

	added support for more .fastq.gz formats, including paired files

	increased test coverage

version 0.12.1

	support .fastq.gz files

	added new ways to load testsuites

	some bugfixes in scripts/table_{scan|combine}.py

	moved additional testsuites into their own
repositories [https://github.com/kvarq]

version 0.11.3

	(first public version, pushed to github)

	compile on windows without having to install pthread files

	moved all testsuites into separate testsuite/ directory

	introduced testsuite compatability checks

	updated MTBC.resistance testsuite (added katG.279,
rpoC.N698H, renamed rrsK)

version 0.11.2

	renamed to KvarQ (previous name was “pyseq”)

	made xlrd, xlwt optional dependencies (import/export data as .csv)

	polished GUI somewhat

version 0.11.1

	internally use kvarq.analyse.Coverage instead of
kvarq.genes.Test to identify sequences and hits

	more compact file format

	support legacy .json files; legacy testsuites can also be loaded
separately (some are included in testsuites/legacy/)

version 0.10.10

	enabled multiple use of same kvarq.genes.Test for different
kvarq.genes.Testsuite

version 0.10.9

	implemented all plotting in Tkinter – matplotlib not needed anymore

	added settings dialog to GUI

	moved non-published tests into separate files in testsuites/ directory

version 0.10.8

	added new fields to stats : nseqhits, records_parsed

	added new attributes to kvarq.fastq.Fastq :
readlength, records_approx

	(these fields are also displayed in the json explorer)

	added terminal color support

	improved FastQ quality score decoding

	improved scripts/table_combine.py (insert data into existing table)

	include html documentation in distributions

	testsuites can be loaded from arbitrary locations (see Rolling your own testsuite)

version 0.10.7

	relaxed .fastq file format specifications

version 0.10.6

	.fastq file format checking (both in kvarq.fastq and kvarq.engine)

	give every thread 10 file junks to keep scanning speed constant until
the end

version 0.10.5

	“batch processing” in kvarq.gui.{simple|explorer}

	resistances output aa number

	cleaned up output spoligo/resistances

	do not include hits in .jsons when using gui/simple

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	KvarQ 0.12.2 documentation

Index

 F
 | M
 | P

F

 	

 	FastQ file

M

 	

 	MTBC

P

 	

 	Phred (quality) score

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

 _static/imgs/screenshots/settings.png
KvarQ 0.12.2 -- settings

Engine configuration

minimum overlap 25

errors 2
spacing 25
threads 8
quality 13

minimum readlength 25

save cancel

_static/imgs/screenshots/json_explorer_info.png
KvarO O 11 2 icon exnlorer

861_1.json

info

resistance: Streptomycin resistance::SNP781687AG=rpsL.K43R; Isoniazid resistance [21]5
phylo: lineage 2/beijing sublineage

fastq : /tbresearch/genomes/IN_PROGRESS/PE_fastq/861_1.fastq

size : 1687.53 MB

readlength : 95

records_approx : 7864449

scantime : 174 s

iconfig : minreadlength=25 maxerrors=2 Amin=. nthreads=8 minoverlap=25

readlengths...

mean coverage...

hits /template...
records_parsed : 7767951
progress : 100.0 %

_static/imgs/screenshots/simple_scanning.png
KvarQ 0.11.2 -- scan .fastq files
/Users/ast/Documents/git/pyseq/tests/MTB_98_1833.fastq

stop | [=> 16% 1 10s / 1m 26s

show save

_static/imgs/screenshots/json_explorer_SNP_hit.png
Sabb KvarQ 0.11.2 -~ beijing sublineage::SNP1849051CT

pos=1849051 coverage=137
e

_static/fancybox/fancybox.png
000e®

_images/main.png
scan .fastq files

explore .json files

settings

help

KvarQ 0.12.2

[INFO] fastq : readlength=51
ina 1.8+"']

[INFO] loaded testsuite from
ligo.py" in 1ms

[INFO] loaded testsuite from
istance.py" in 3ms

[INFO] loaded testsuite from
lo.py" in 1ms

kvarq log output

records_approx=1250 dQ=0 variants=['Sanger', 'Illum
"/Users/ast/Documents/git/kvarq/testsuites/MTBC/spo
"/Users/ast/Documents/git/kvarq/testsuites/MTBC/res

"/Users/ast/Documents/git/kvarq/testsuites/MTBC/phy

[INFO] start scanning /Users/ast/Documents/git/kvarq/tests/fastqs/L3_N1014_hits_

5k.fastq (@ MB)

[INFO] finished scanning after ©.577 seconds

[INFO] analyzing data...
[INFO] done analyzing data

_static/imgs/screenshots/json_explorer_region_mutation.png
pos=2155168 coverage=115 mutations=115x G

_static/imgs/screenshots/directory_explorer.png
...suites/SNP_barcodes/results

MTB_BTBH0127_1.fastq.json
MTB_BTBHO0444_1.fastq.json
MTB_K37.fastg.json
MTB_K49.fastqg.json
MTB_MTO0001_1.fastg.json
MTB_MTO0005_1.fastg.json
MTB_NO04_read_1.fastq.json
MTB_N24_read_1.fastq.json
MTB_N73_1.fastg.json
MTB_russia_ERR015614_1.fastq.json
MTB_russia_ERR015615_1.fastq.json
MTB_russia_ERR015616_1.fastq.json

MTB_SG1_12.fastq.json
MTR X/32 SRRN?23455 1 fastn isnn

summarize...

_images/json_explorer_SNP_no_hit.png
pos=3624613 coverage=87

_images/testsuite_selection.png
KvarQ 0.12.2

select testsuites for scan:
CanSNPer/bacillus_anthracis
CanSNPer/coxiella_burnetii
CanSNPer/francisella_tularensis
CanSNPer /yersinia_pestis
MTBC-deletions/deletions

v/ MTBC/phylo

v/ MTBC/resistance

v/ MTBC/spoligo
SNP_barcodes/coll14
ebola-sierraleonel4/sierraleonel4
examples/SNPs
examples/example
examples/regions
legacy/phylo-0.3
legacy/phylo-0.5
legacy/resistance-0.4

_images/json_explorer_tests.png
KvarO O 11 2 : I

861_1.json

info
resistance: Streptomycin resistance::SNP781687AG=rpsL.K43R; Isoniazid resistance [215
phylo: lineage 2/beijing sublineage

Fluoroquinolones resistance::SNP6768GA 140 hits (mean 0.0/135.0)

Fluoroquinolones resistance::SNP7606CA 133 hits (mean 0.0/133.0)

Fluoroquinolones resistance::SNP7677GA 102 hits (mean 0.0/98.0)

Fluoroquinolones resistance::SNP7678CG 104 hits (mean 0.0/101.0)

+ Isoniazid resistance::MTB ancestor[2155167:2155169](-) 122 hits (mean 77.0/115.3)
Isoniazid resistance::SNP1673425CT 58 hits (mean 0.0/55.0)

Isoniazid resistance::SNP1673432TA 54 hits (mean 0.0/50.0)

Isoniazid resistance::SNP1673432TC 54 hits (mean 0.0/50.0)

Rifampicin resistance (compensatory)::SNP764669CG 93 hits (mean 0.0/93.0)
Rifampicin resistance (compensatory)::SNP764670CG 95 hits (mean 0.0/91.0)
Rifampicin resistance (compensatory)::SNP764817TC 146 hits (mean 0.0/143.0)
Rifampicin resistance (compensatory)::SNP764817TG 146 hits (mean 0.0/143.0)
Rifampicin resistance (compensatory)::SNP764819TG 145 hits (mean 0.0/142.0)
Rifampicin resistance (compensatory)::SNP764822GA 146 hits (mean 0.0/144.0)

_images/dataflow.png
genes. * engine analyser
(sequences) (hitlist) (coverages)
genes. *

fastq

results

json

_images/simple_scanning.png
KvarQ 0.11.2 -- scan .fastq files
/Users/ast/Documents/git/pyseq/tests/MTB_98_1833.fastq

stop | [=> 16% 1 10s / 1m 26s

show save

_images/json_explorer_SNP_hit.png
Sabb KvarQ 0.11.2 -~ beijing sublineage::SNP1849051CT

pos=1849051 coverage=137
e

_images/overview.png
testsuite katG = DrugResistance('Isoniazid', Gene('katG', 2153889, 2156111))

resistance.py Test (template=TemplateFromGenome (2155167, 2155169), genotype=katG))

genome
hypothetical ancestor

target sequence

.fastq reads
bases & PHRED score

coverage
mutation, amino acid change

result

region of interest

flank 111 flank

.. .CCTCGATGCCGCTGGTGATCGCG’

TGTTCGTCCATACGACCTCGATGCCGCTGGTGATCGCG’

FFEETCGGGGTGTTCGTCCATACGACCTCGATGCC
-*+-2011//]112/0122/0/21011210///0122%kx++

FFEGHCCATACGACCTCGATGCCGGTGGTGATCGCG

TCC. ..

TCCTTACCGGTTCCG

FEET

5, %=%/1/0221211110020021222122212/02}-*-*

-+-+//21200/202000121|

GCCGGTGGTGATCGCGTCCTTACCGGTTCCGGTEE

1/02/1100102/2/ /]t , -+

lvivIElTlcITITIIIAIDIKI

155168CG:

atG.S315T]

uonetedaid uoniuep

Suluueds

sisayjuks

_images/json_explorer_region_mutation.png
pos=2155168 coverage=115 mutations=115x G

search.html

 Navigation

 		
 index

 		KvarQ 0.12.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.2.2.

_images/engine_config.png
overlap

——————
SEQUENCE —— CTATCEGGATARCGACTT TIGGCTTTTAARTGACACCTA

TR TGACACCTAGEACGCACGCTCGGOGCCCTOTARTGCCGATARCGACTTTTGGCTTT read
ARAARARAAAARABEBBECCCCCCCCCCCCCRBBEBRBBEEEBBEBEEBEBEBEBEAAAAR ea

readlength

_images/settings.png
KvarQ 0.12.2 -- settings

Engine configuration

minimum overlap 25

errors 2
spacing 25
threads 8
quality 13

minimum readlength 25

save cancel

_images/json_explorer_info.png
KvarO O 11 2 icon exnlorer

861_1.json

info

resistance: Streptomycin resistance::SNP781687AG=rpsL.K43R; Isoniazid resistance [21]5
phylo: lineage 2/beijing sublineage

fastq : /tbresearch/genomes/IN_PROGRESS/PE_fastq/861_1.fastq

size : 1687.53 MB

readlength : 95

records_approx : 7864449

scantime : 174 s

iconfig : minreadlength=25 maxerrors=2 Amin=. nthreads=8 minoverlap=25

readlengths...

mean coverage...

hits /template...
records_parsed : 7767951
progress : 100.0 %

_images/directory_explorer.png
...suites/SNP_barcodes/results

MTB_BTBH0127_1.fastq.json
MTB_BTBHO0444_1.fastq.json
MTB_K37.fastg.json
MTB_K49.fastqg.json
MTB_MTO0001_1.fastg.json
MTB_MTO0005_1.fastg.json
MTB_NO04_read_1.fastq.json
MTB_N24_read_1.fastq.json
MTB_N73_1.fastg.json
MTB_russia_ERR015614_1.fastq.json
MTB_russia_ERR015615_1.fastq.json
MTB_russia_ERR015616_1.fastq.json

MTB_SG1_12.fastq.json
MTR X/32 SRRN?23455 1 fastn isnn

summarize...

_static/minus.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/logo.png

_static/file.png

_static/ajax-loader.gif

_static/imgs/dataflow.png
genes. * engine analyser
(sequences) (hitlist) (coverages)
genes. *

fastq

results

json

_static/down.png

_static/imgs/engine_config.png
overlap

——————
SEQUENCE —— CTATCEGGATARCGACTT TIGGCTTTTAARTGACACCTA

TR TGACACCTAGEACGCACGCTCGGOGCCCTOTARTGCCGATARCGACTTTTGGCTTT read
ARAARARAAAARABEBBECCCCCCCCCCCCCRBBEBRBBEEEBBEBEEBEBEBEBEAAAAR ea

readlength

_static/imgs/screenshots/main.png
scan .fastq files

explore .json files

settings

help

KvarQ 0.12.2

[INFO] fastq : readlength=51
ina 1.8+"']

[INFO] loaded testsuite from
ligo.py" in 1ms

[INFO] loaded testsuite from
istance.py" in 3ms

[INFO] loaded testsuite from
lo.py" in 1ms

kvarq log output

records_approx=1250 dQ=0 variants=['Sanger', 'Illum
"/Users/ast/Documents/git/kvarq/testsuites/MTBC/spo
"/Users/ast/Documents/git/kvarq/testsuites/MTBC/res

"/Users/ast/Documents/git/kvarq/testsuites/MTBC/phy

[INFO] start scanning /Users/ast/Documents/git/kvarq/tests/fastqs/L3_N1014_hits_

5k.fastq (@ MB)

[INFO] finished scanning after ©.577 seconds

[INFO] analyzing data...
[INFO] done analyzing data

_static/imgs/overview.png
testsuite katG = DrugResistance('Isoniazid', Gene('katG', 2153889, 2156111))

resistance.py Test (template=TemplateFromGenome (2155167, 2155169), genotype=katG))

genome
hypothetical ancestor

target sequence

.fastq reads
bases & PHRED score

coverage
mutation, amino acid change

result

region of interest

flank 111 flank

.. .CCTCGATGCCGCTGGTGATCGCG’

TGTTCGTCCATACGACCTCGATGCCGCTGGTGATCGCG’

FFEETCGGGGTGTTCGTCCATACGACCTCGATGCC
-*+-2011//]112/0122/0/21011210///0122%kx++

FFEGHCCATACGACCTCGATGCCGGTGGTGATCGCG

TCC. ..

TCCTTACCGGTTCCG

FEET

5, %=%/1/0221211110020021222122212/02}-*-*

-+-+//21200/202000121|

GCCGGTGGTGATCGCGTCCTTACCGGTTCCGGTEE

1/02/1100102/2/ /]t , -+

lvivIElTlcITITIIIAIDIKI

155168CG:

atG.S315T]

uonetedaid uoniuep

Suluueds

sisayjuks

_static/imgs/logo.png

_static/imgs/screenshots/testsuite_selection.png
KvarQ 0.12.2

select testsuites for scan:
CanSNPer/bacillus_anthracis
CanSNPer/coxiella_burnetii
CanSNPer/francisella_tularensis
CanSNPer /yersinia_pestis
MTBC-deletions/deletions

v/ MTBC/phylo

v/ MTBC/resistance

v/ MTBC/spoligo
SNP_barcodes/coll14
ebola-sierraleonel4/sierraleonel4
examples/SNPs
examples/example
examples/regions
legacy/phylo-0.3
legacy/phylo-0.5
legacy/resistance-0.4

_static/imgs/screenshots/json_explorer_tests.png
KvarO O 11 2 : I

861_1.json

info
resistance: Streptomycin resistance::SNP781687AG=rpsL.K43R; Isoniazid resistance [215
phylo: lineage 2/beijing sublineage

Fluoroquinolones resistance::SNP6768GA 140 hits (mean 0.0/135.0)

Fluoroquinolones resistance::SNP7606CA 133 hits (mean 0.0/133.0)

Fluoroquinolones resistance::SNP7677GA 102 hits (mean 0.0/98.0)

Fluoroquinolones resistance::SNP7678CG 104 hits (mean 0.0/101.0)

+ Isoniazid resistance::MTB ancestor[2155167:2155169](-) 122 hits (mean 77.0/115.3)
Isoniazid resistance::SNP1673425CT 58 hits (mean 0.0/55.0)

Isoniazid resistance::SNP1673432TA 54 hits (mean 0.0/50.0)

Isoniazid resistance::SNP1673432TC 54 hits (mean 0.0/50.0)

Rifampicin resistance (compensatory)::SNP764669CG 93 hits (mean 0.0/93.0)
Rifampicin resistance (compensatory)::SNP764670CG 95 hits (mean 0.0/91.0)
Rifampicin resistance (compensatory)::SNP764817TC 146 hits (mean 0.0/143.0)
Rifampicin resistance (compensatory)::SNP764817TG 146 hits (mean 0.0/143.0)
Rifampicin resistance (compensatory)::SNP764819TG 145 hits (mean 0.0/142.0)
Rifampicin resistance (compensatory)::SNP764822GA 146 hits (mean 0.0/144.0)

_static/imgs/screenshots/json_explorer_SNP_no_hit.png
pos=3624613 coverage=87

